Altered cell-surface targeting of stem cell factor causes loss of melanocyte precursors in Steel17H mutant mice.
نویسندگان
چکیده
The normal products of the murine Steel (Sl) and Dominant white spotting (W) genes are essential for the development of melanocyte precursors, germ cells, and hematopoietic cells. The Sl locus encodes stem cell factor (SCF), which is the ligand of c-kit, a receptor tyrosine kinase encoded by the W locus. One allele of the Sl mutation, Sl17H, exhibits minor hematopoietic defects, sterility only in males, and a complete absence of coat pigmentation. The Sl17H gene encodes SCF protein which exhibits an altered cytoplasmic domain due to a splicing defect. In this paper we analyzed the mechanism by which the pigmentation phenotype in Sl17H mutant mice occurs. We show that in embryos homozygous for Sl17H the number of melanocyte precursors is severely reduced on the lateral neural crest migration pathway by e11.5 and can no longer be detected by e13.5 when they would enter the epidermis in wildtype embryos. The reduced number of dispersing melanocyte precursors correlates with a reduction of SCF immunoreactivity in mutant embryos in all tissues examined. Regardless of the reduced amount, functional SCF is present at the cell surface of fibroblasts transfected with Sl17H mutant SCF cDNA. Since SCF immunoreactivity normally accumulates in basolateral compartments of SCF-expressing embryonic epithelial tissues, we analyzed the localization of wildtype and Sl17H mutant SCF protein in transfected epithelial (MDCK) cells in vitro. As expected, wildtype forms of SCF localize to and are secreted from the basolateral compartment. In contrast, mutant forms of SCF, which either lack a membrane anchor or exhibit the Sl17H altered cytoplasmic tail, localize to and are secreted from the apical compartment of the cultured epithelium. We suggest, therefore, that the loss of melanocyte precursors prior to epidermal invasion, and the loss of germ cells from mature testis, can be explained by the inability of Sl17H mutant SCF to be targeted to the basolateral compartment of polarized epithelial keratinocytes and Sertoli cells, respectively.
منابع مشابه
Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors.
Mutations at the murine dominant white spotting (KitW) and steel (MgfSl) loci, encoding c-Kit receptor kinase and its ligand respectively, exert developmental defects on hematopoietic cells, melanocytes, germ cells and interstitial cells of Cajal. The expression patterns of steel factor (SLF) observed in the skin and gonads suggest that SLF mediates a migratory or a chemotactic signal for c-Kit...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 210 1 شماره
صفحات -
تاریخ انتشار 1999